Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jonathan D Crane* and Steven M Daniels

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

Correspondence e-mail: j.d.crane@hull.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in solvent or counterion
R factor $=0.045$
$w R$ factor $=0.118$
Data-to-parameter ratio $=20.2$

For details of how these key indicators were automatically derived from the article, see
http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

[(Z)-3-Dimethylamino-2-(1,3-dioxo-2,3-dihydro-1H-isoindol-2-yl)allylidene]dimethylammonium hexafluorophosphate

At 150 K , the asymmetric unit of the crystal structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{PF}_{6}{ }^{-}$, comprises two molecules. The geometric parameters for the two cations are similar, with the most significant difference being the magnitude of the dihedral angle between the two planar regions of each molecule.

Comment

The title compound, (I), crystallizes with two molecules in the asymmetric unit (Fig. 1), but the bond lengths and angles for the two cations are very similar, and only cation 1 (Table 1) is discussed in detail below.

(I)

For cation 1 ($\mathrm{C} 1-\mathrm{C} 15$), the phthalimide (1,3-dioxo-2,3-di-hydro- $1 H$-isoindole) group is close to planar, the largest deviation from the least-squares plane being 0.047 (2) \AA for atom C14. Similarly, the conjugated cationic 1,3-bis(dimethylamino)trimethinium group is planar, the largest deviation from the least-squares-plane being 0.109 (2) \AA for the terminal methyl group C 7 . The most significant difference between the two cations is the magnitude of the dihedral angle between these two planar groups: 86.06 (4) and $83.29(4)^{\circ}$ for cations 1 and 2, respectively. The approximate symmetry of the bond distances in the trimethinium group, along with its planarity, confirm the delocalization of the positive charge over both N atoms. The $\left[\mathrm{PF}_{6}\right]^{-}$anions occupy channels in the structure parallel to the crystallographic a axis (Fig. 2). Anion 2 (P 2 , etc.) is disordered over two orientations, with an occupancy ratio of 0.883 (2):0.117 (2).

Experimental

The title compound, (I), was prepared according to the method of Davies et al. (2000). Suitable crystals were grown by recrystallization from methanol.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{F}_{6} \mathrm{P}^{-}$	$Z=4$
$M_{r}=417.29$	$D_{x}=1.489 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.2929(9) \AA$	Cell parameters from 19784
$b=10.8379(11) \AA$	reflections
$c=18.7453(19) \AA$	$\theta=1.9-29.7^{\circ}$
$\alpha=85.696(8)^{\circ}$	$\mu=0.22 \mathrm{~mm}^{-1}$
$\beta=84.306(8)^{\circ}$	$T=150(2) \mathrm{K}$
$\gamma=83.175(8)^{\circ}$	Lath, yellow
$V=1861.5(3) \AA^{\circ}$	$0.60 \times 0.25 \times 0.10 \mathrm{~mm}$

Received 11 February 2004
Accepted 12 February 2004
Online 20 February 2004

Data collection

Stoe IPDS-II area-detector diffractometer
φ and ω scans
Absorption correction: none
41451 measured reflections
10507 independent reflections
5375 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.064$
$\theta_{\text {max }}=29.7^{\circ}$
$h=-11 \rightarrow 12$
$k=-15 \rightarrow 15$
$l=-26 \rightarrow 26$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.118$
$S=0.81$
10507 reflections
521 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0669 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.009 \\
& \Delta \rho_{\max }=0.52 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.36 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0073(7)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 8$	$1.205(2)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.313(2)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.204(2)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.304(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.406(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.397(3)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.413(2)$	$\mathrm{C} 1-\mathrm{C} 3$	$1.406(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.421(2)$		
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	$111.69(13)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$123.21(16)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1$	$124.06(14)$	$\mathrm{C} 3-\mathrm{C} 1-\mathrm{N} 1$	$122.30(16)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1$	$124.07(14)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$131.96(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3$	$114.43(15)$	$\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 1$	$131.78(16)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$98.2(2)$	$\mathrm{C} 28-\mathrm{N} 21-\mathrm{C} 21-\mathrm{C} 23$	$-101.8(2)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-86.9(2)$	$\mathrm{C} 29-\mathrm{N} 21-\mathrm{C} 21-\mathrm{C} 23$	$83.2(2)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3$	$-84.7(2)$	$\mathrm{C} 28-\mathrm{N} 21-\mathrm{C} 21-\mathrm{C} 22$	$81.3(2)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3$	$90.1(2)$	$\mathrm{C} 29-\mathrm{N} 21-\mathrm{C} 21-\mathrm{C} 22$	$-93.6(2)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$-176.71(19)$	$\mathrm{C} 23-\mathrm{C} 21-\mathrm{C} 22-\mathrm{N} 22$	$-177.07(19)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$0.6(3)$	$\mathrm{N} 21-\mathrm{C} 21-\mathrm{C} 22-\mathrm{N} 22$	$0.0(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3-\mathrm{N} 3$	$178.06(19)$	$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 23-\mathrm{N} 23$	$178.97(19)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{N} 3$	$0.8(3)$	$\mathrm{N} 21-\mathrm{C} 21-\mathrm{C} 23-\mathrm{N} 23$	$1.9(3)$

All H atoms were initially located in a difference Fourier map. All $\mathrm{C}-\mathrm{H}$ atoms were then placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.95-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2001); program(s) used to solve structure: X-STEP32 (Stoe \& Cie, 2001) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

References

Davies, I. W., Marcoux, J. F., Wu, J., Palucki, M., Corley, E. G., Robbins, M. A., Tsou, N., Ball, R. G., Dormer, P., Larsen, R. D. \& Reider, P. J. (2000). J. Org. Chem. 65, 4571-4574.

Figure 1
View of the asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Both disorder components are shown; the F-atom labels of the minor component (hollow bonds) have been omitted for clarity.

The packing of (I).

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Stoe \& Cie (2001). X-AREA, X-RED32 and X-STEP32. Stoe \& Cie, Darmstadt, Germany.

